Toftwood Infant and Junior School Federation Calculation Procedures

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Numicon Fingers Number line Objects/cubes Ten Frames	Numicon Fingers Number line Base 10 (concrete and pictorial)	Numicon Fingers Number line Base 10 (concrete and pictorial) Column method	Column method regrouping. (up to 3 digits)	Column method regrouping. (up to 4 digits)	Column method regrouping. (with more than 4 digits) (Decimals - with the same amount of decimal places)	Column method regrouping. (Decimals - with different amounts of decimal places)
Subtraction	Numicon Fingers Number line Objects/Cubes	Numicon Fingers Number line Base 10 (concrete and pictorial)	Numicon Fingers Number line Base 10 (concrete and pictorial)	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals - with the same amount of decimal places)	Column method with regrouping. (Decimals - with different amounts of decimal places)
Multiplication	Counting Fingers Doubling using dots Numicon	Counting Fingers Numicon Arrays Repeated Addition Using Multiplication Facts	Counting Fingers Cubes Arrays Repeated Addition Using Multiplication Facts	Counting in multiples Repeated addition Arrays - showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing using objects including cubes	Sharing into groups using objects, pictorial representation Cubes	Sharing into groups using objects, pictorial representation Grouping using pictorial representation Using multiplication facts	Division within arrays Division with a remainder Short division (2 digits by 1 digit concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number interpret remainders as whole numbers, fractions or round)

Addition

Key vocabulary which should be used: add, plus, total, altogether, more

Conerete	Pietorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Using Numicon to count on $4+3=7$	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4 ? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g $6+\square=11$ and $6+5=5+\square \quad 6+5=\square+4$

Using a number line to find one more than a given number.

To add 3, one digit numbers

$$
2+3+4=9
$$

Start on the largest number (4) then add the next biggest (3) then the last number (2). Moving onto the children identifying $3+2=5$ and adding 4 and 5 to make 9 .
TO + O using base 10. Continue to develop understanding of partitioning and place value $41+8$

1
Children to represent the concrete using a
particular symbol e.g. lines for tens and
dot/crosses for ones or drawing the Base 10.

TO + TO using base 10. Continue to develop understanding of partitioning and place value and use this to support addition. Begin with no exchanging. 36 + 25

This could be done one of two ways:

Looking for ways to make 10

$36+25=$| $30+20=50$ |
| :--- |
| $5+5=10$ |
| $50+10+1=61$ |

Formal method:
36
$+25$
61

1

Children may use pictures/marks to aid their explanation or understanding, or to solve a mathematical concept/problem -		Solving missing number problems using one/two/three digits and link to number bonds -
I have 4 apples.	There are 16 pens in my bag and then I get 12 more. How many pens do I have altogether?	$6+\ldots=10 \quad 10=\ldots+4$
I have 4 apples. I find 2 more.	IIIII IIIII IIIII + IIIII IIIII II	\qquad $+18=20$ $20=2+$
How many do I have now?		$50+\ldots=100 \quad 100=50+\ldots$

Subtraction

Key vocabulary which should be used: take (away), subtract, less, fewer

Concrete					Pictor			Abstract	
Physically taking away and removing objects from a whole (use various objects too) rather than crossing out children will physically remove the objects	Children to draw the concrete resources they are using and cross out. use of the bar model:							$4-3=$ $=4-3$?
Counting back using number lines. Finding one less than a given number	Children X		X	ent	hat \dagger 6 X	pic X	ally e.g. K	Find the difference between 8 and 6 . $8-6$, the difference is? Children to also explore why 9-7=8-6 (the difference, of each digit, has changed by 1 so the difference is the same - this will help when solving 10000-9987)	

Finding difference (using cubes, Numicon other objects can also be used)	Children to draw the cubes/other concrete objects which they have used XXXXXXX XXXXX Use of the bar model			14-5 = 9 You also want children to sec related facts e.g. 14-9=5 Children to represent how they have solved it e.g. $14-5=9 \quad 5$ is made up of 4 and 1 so I can subtract 4 to make 10 and then 1 to get to 9
Making 10 (using numicon or ten frames) 14-5 Children could also do this by subtracting a 5 from the 10.	Children to present the ten frame pictorially			$48-7=\quad \begin{array}{r} 48 \\ -\frac{7}{41} \end{array}$
Column method (using base 10) 48-7	Represent the base 10 pictorially			

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
391 \\
186
\end{tabular} \& \begin{tabular}{l}
Raj spent £391, Timmy spent £186. How much more did Raj spend? \\
I had 391 metres to run. After 1861 stopped. How many metres do I have left to run?
\end{tabular} \& \begin{tabular}{l}
391-186

$$
=391-186
$$

391

$$
\underline{-186}
$$

\qquad

Find the difference between 391 and 186 Subtract 186 from 391. What is 186 less than 391?
\end{tabular} \& What's th answer?

\square \& \& What's the

\hline Children may use pictures/marks to aid the concept/problem - \& explanation or understandin \& , or to solve a mathematical \& \multicolumn{3}{|l|}{| Solving missing number problems using one/two/three digits and link to number bonds - |
| :--- |
| Children understand commutativity and that the order of numbers in a subtraction calculation is important. |}

\hline I had 10 p. I spent 3 p. How much do I have left? \& \multicolumn{2}{|l|}{| There are 14 apples in a bag. Jim took 3. |
| :--- |
| How many are left? |} \& \multicolumn{3}{|l|}{\[

$$
\begin{aligned}
& 10--=7 \\
& 10-3=- \\
& --7=3 \\
& --3=7
\end{aligned}
$$
\]}

\hline
\end{tabular}

Multiplication

Key vocabulary which should be used: multiply, repeated addition, groups, equal, pattern

Fluency variation, different ways to ask children to solve 6×23 :

Division

Key vocabulary which should be used: share, group(s), divide, equal

Conerete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	$12 \div 4=$ This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Children are encouraged to use their multiplication facts to solve division calculations - $30 \div 10=\quad 10,20,30$
$2 d \div 1 d$ with remainders $13 \div 4$ - 3 remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	$13 \div 4$ - 3 remainder 1 Children to count their times tables facts in their heads

Use of 'bus stop method' using grouping and language for grouping - how many groups of X with X hundreds' - this can also be done using Step 1: make 615 Step 2: Circle your groups of 5 Step 3: Exchange 1H for 10 T and circle groups of 5 Step 4: exchange 1T for 10ones and circles groups of 5	counters. Key X can we make ing sharing!	This can easily be represented pictorially, until the children no longer need to do it. It can also be done to decimal places if you have a remainder!		
Fluency variation. different ways to ask children to solve $615+5$:				
Using the part whole model below, how can you divide 615 by 5 without using the 'bus stop' method?	I have £61 between 5 b will be in each 615 pupils need groups. How m group?	and share it equally k accounts. How much account? to be put into 5 any will be in each	$5 \longdiv { 6 1 5 }$ $615 \div 5=$ \square $=615 \div 5$ How many 5's go into 615?	What's the calculation? What's the answer?

Children may use pictures/marks to aid their explanation or understanding, or to solve a mathematical concept/problem			Solving problems using multiplication facts including missing number problems. Children understand commutativity and that the order of numbers in a division calculation is important.
Ten children are split into 2 groups. How many children in each group?	There are 20 sweets. They are shared between 4 people. How many do they have each?	There are 16 apples in a basket. They are shared between 4 people. How many do they have each?	Ben has 12 pens and shares them between two pots. How many in each pot?
			$\begin{aligned} & 2,4,6,8,10,12 \\ & 1 \end{aligned} 2$
			$\begin{array}{ll} 15 \div 3=- & 5=15 \div- \\ -5=3 & -=15 \div 5 \end{array}$

Long division

Concrete	Pictorial	Abstract
$2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2. Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	Children to represent the counters, pictorially and record the subtractions beneath.	Step one- exchange 2 thousand for 20 hundreds so we now have 25 hundreds.

