

Toftwood Infant and Junior School Federation Science Curriculum

Toftwood Infant and Junior School Federation

Science							
	Term						
1	Autumn	Spring	Summer				

Working Scientifically Pupils are taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content:

Asking simple questions and recognising that they can be answered in different ways

Observing closely, using simple equipment

Performing simple tests

Identifying and classifying

Using their observations and ideas to suggest answers to questions

Gathering and recording data to help in answering question

Animals, including humans

Identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals.

Identify and name a variety of common animals that are carnivores, herbivores and omnivores.

Describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals including pets).

Identify, name, draw and label the basic parts of the human body and say which part of the body is associated with each sense.

Seasonal changes

Observe changes across the 4 seasons.

Observe and describe weather associated with the seasons and how day length varies.

Animals, including humans

Identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals.

Describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals including pets).

Seasonal changes

Observe changes across the 4 seasons

Observe and describe weather associated with the seasons and how day length varies.

Everyday materials

Distinguish between an object and the material from which it is made.

Identify and name a variety of everyday materials, including wood, plastic, glass, metal, water, and rock.

Describe the simple physical properties of a variety of everyday materials.

Compare and group together a variety of everyday materials on the basis of their simple physical properties.

Plants

Identify and name a variety of common wild and garden plants, including deciduous and evergreen trees.

Identify and describe the basic structure of a variety of common flowering plants, including trees.

Seasonal changes

Observe changes across the 4 seasons.

Observe and describe weather associated with the seasons and how day length varies.

Everyday materials

Distinguish between an object and the material from which it is made.

Identify and name a variety of everyday materials, including wood, plastic, glass, metal, water, and rock.

Describe the simple physical properties of a variety of everyday materials.

Compare and group together a variety of everyday materials on the basis of their simple physical properties.

Working Scientifically Pupils are taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content:

Asking simple questions and recognising that they can be answered in different ways

Observing closely, using simple equipment

Performing simple tests

Identifying and classifying

Using their observations and ideas to suggest answers to questions

Gathering and recording data to help in answering question

Living things and their habitats

Identify that most living things live in habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other.

Describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify and name different sources of food.

Plants

Observe and describe how seeds and bulbs grow into mature plants.

Find out and describe how plants need water, light and a suitable temperature to grow and stay healthy.

Uses of everyday materials

Identify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses.

Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching.

Living things and their habitats

Explore and compare the differences between things that are living, dead, and things that have never been alive.

Identify that most living things live in habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other.

Identify and name a variety of plants and animals in their habitats, including microhabitats.

Plants

Observe and describe how seeds and bulbs grow into mature plants.

Animals, including humans

Notice that animals, including humans, have offspring which grow into adults.

Find out about and describe the basic needs of animals, including humans, for survival (water, food and air).

Describe the importance for humans of exercise, eating the

Plants

Observe and describe how seeds and bulbs grow into mature plants.

Living things and their habitats

Identify and name a variety of plants and animals in their habitats, including microhabitats.

Explore and compare the differences between things that are living, dead and things that have never been alive.

Animals, including humans Notice that animals, including humans, have offspring which grow into adults.

Find out about and describe the basic needs of animals, including humans, for survival (water, food and air).

Describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify and name different sources of food.

	right amounts of different types of food, and hygiene.	

Science							
		Term					
3	Autumn	Spring	Summer				

Working Scientifically Pupils are taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content:

Asking relevant questions and using different types of scientific enquiries to answer them Setting up simple practical enquiries, comparative and fair tests

Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers

Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions
Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables
Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results
and conclusions

Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions

Identifying differences, similarities or changes related to simple scientific ideas and processes Using straightforward scientific evidence to answer questions or to support their findings.

Forces and magnets

Compare how things move on different surfaces
Notice that some forces need contact between two objects, but magnetic forces can act at a distance

Observe how magnets attract or repel each other and attract some materials and not others
Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials
Describe magnets as having two poles

Predict whether two magnets will attract or repel each other, depending on which poles are facing.

Light

Recognise that they need light in order to see things and that dark is the absence of light
Notice that light is reflected from surfaces

Plants

Identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers Explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant Investigate the way in which water is transported within plants Explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal.

Rocks

Compare and group together different kinds of rocks on the basis of their appearance and simple physical properties
Describe in simple terms how fossils are formed when things that have lived are trapped within rock

Recognise that soils are made from rocks and organic matter.

Animals including humans

Identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat Identify that humans and some other animals have skeletons and muscles for support, protection and movement.

Recognise that light from the sun can be dangerous and that there are ways to protect their eyes
Recognise that shadows are formed when the light from a light source is blocked by an opaque object
Find patterns in the way that the size of shadows change.

4 Autumn Spring Summer

Working Scientifically Pupils are taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content:

Asking relevant questions and using different types of scientific enquiries to answer them Setting up simple practical enquiries, comparative and fair tests

Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers

Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions
Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables
Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results
and conclusions

Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions

Identifying differences, similarities or changes related to simple scientific ideas and processes Using straightforward scientific evidence to answer questions or to support their findings.

States of matter

Compare and group materials together, according to whether they are solids, liquids or gases Observe that some materials change state when they are heated or cooled, and measure or research the temperature at which this happens in degrees Celsius (°C) Identify the part played by evaporation and condensation in the water cycle and associate the rate of evaporation with temperature.

Sound

Identify how sounds are made, associating some of them with something vibrating.
Recognise that vibrations from sounds travel through a medium to the ear

Find patterns between the pitch of a sound and features of the object that produced it
Find patterns between the volume of a sound and the strength of the vibrations that produced it
Recognise that sounds get fainter as the distance from the sound source increases.

Electricity

Identify common appliances that run on electricity
Construct a simple series electrical circuit, identifying and naming its basic parts, including cells, wires, bulbs, switches and buzzers
Identify whether or not a lamp will light in a simple series circuit, based on whether or not the lamp is part of a complete loop with a battery

Recognise that a switch opens and closes a circuit and associate this with whether or not a lamp lights in a simple series circuit
Recognise some common conductors and insulators, and associate metals with being good conductors.

Living things and their habitats

Recognise that living things can be grouped in a variety of ways Explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment Recognise that environments can change and that this can sometimes pose dangers to

living things.

Animals including humans

Describe the simple functions
of the basic parts of the
digestive system in humans

Identify the different types of
teeth in humans and their simple
functions

Construct and interpret a

variety of food chains, identifying producers, predators and prey.

5 Autumn Spring Summer

Working Scientifically

Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary

Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate

Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs

Using test results to make predictions to set up further comparative and fair tests

Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations

Identifying scientific evidence that has been used to support or refute ideas or arguments.

Earth and space

Describe the movement of the Earth, and other planets, relative to the Sun in the solar system Describe the movement of the Moon relative to the Earth Describe the Sun, Earth and Moon as approximately spherical bodies Use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky.

Properties and changes of materials

Compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets Know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution Use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering, sieving and evaporating Give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic Demonstrate that dissolving, mixing and changes of state are reversible changes Explain that some changes result in the formation of new materials,

Forces

Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object

Identify the effects of air resistance, water resistance and friction that act between moving surfaces

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect.

Animals including humans

Describe the changes as humans develop to old age.

All living things and their habitats

Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird. Describe the life processes of reproduction in some plants and animals.

usually reversible, including

and that this kind of change is not

	changes associated with burning and the action of acid on bicarbonate of soda.		
6	Autumn	Spring	Summer

Working Scientifically

Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary

Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate

Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs

Using test results to make predictions to set up further comparative and fair tests

Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations Identifying scientific evidence that has been used to support or refute ideas or arguments.

Animals, including humans

Identify and name the main parts of the human circulatory system, and describe the functions of the heart, blood vessels and blood. Recognise the impact of diet, exercise, drugs and lifestyle on the way their bodies function. Describe the ways in which nutrients and water are transported within animals, including humans.

Light

Recognise that light appears to travel in straight lines.
Use the idea that light travels in straight lines to explain that objects are seen because they emit or reflect light into the eye.
Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes.
Use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them.

Evolution and inheritance

Recognise that living things have changed over time and that fossils provide information about living things that inhabited the Earth millions of years ago.
Recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.

Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.

Electricity

Associate the brightness of a lamp or the volume of a buzzer with the number and voltage of cells used in the circuit.

Compare and give reasons for variations in how components function, including the brightness of bulbs, the loudness of buzzers and the on/off position of switches. Use recognised symbols when representing a simple circuit in a diagram.

Living things and their habitats

Describe how living things are classified into broad groups according to common observable characteristics and base on similarities and differences, including micro-organisms, plants and animals. Give reasons for classifying plants and animals based on specific characteristics.

	Progression of working scientifically objectives								
Working scientifically	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6			
Plan	Ask simple questions when prompted- use everyday language and begin to use scientific words Suggest ways of answering a question	Ask simple questions, by suggesting ideas and know they can be answered / investigated in different ways including by asking people questions and secondary sources, such as books and video clips. Recognise that questions can be answered in different ways.	Ask relevant questions when prompted- use ideas to pose questions independently about the world around them. Use different types of scientific enquiry to answer them. Discuss enquiry methods and describe what a simple fair test is.	Ask and suggest relevant questions and know that they can be answered in a variety of ways, using secondary sources such as ICT when questions cannot be answered through practical investigations. Suggest questions about the world around them using scientific experiences. Use different types of scientific enquiries to answer their questions.	Collaboratively plan different types of scientific enquiries to answer questions. With support, recognise and control variables where necessary. Raise different types of scientific questions and hypotheses. Plan a range of scientific enquires including comparative and fair tests.	Explore and discuss different types of scientific enquiries to answer questions. Select and plan the most suitable line of enquiry. Recognise, explain and control variables where necessary in a variety of comparative and fair tests. Pose and select the most appropriate line of enquiry to investigate questions.			

Do	Observing-	Observing-Observe	Observing- Make	Observing-Make	Observing-Plan and	Observing-make
	observing objects,	something closely and	decisions about what	systematic and	carry out	their own decisions
	materials, and living	describe changes over	to observe in an	careful observations.	comparative and fair	about which
	things and explain	time.	investigation.		tests, making	observations to
	what they see.			Set up simple and	systematic and	make, using test
		Carry out steps in the	Set up simple and	practical	careful observations.	results and
	Follow simple	correct order when	practical enquiries,	enquiries,		observations to make
	instructions to	performing a simple	comparative and	comparative and fair	Take measurements	predictions or set up
	complete a simple	test and begin to	simple fair tests with	tests. Take accurate	using standard units	further tests.
	test individually or	recognise when	support. Use	measurements	with a range of	
	in a group.	something is unfair.	standard units when	using standard units,	scientific equipment,	Take measurements
	Conduct simple		taking measurements.	where appropriate.	with increasing	with a range of
	tests, with support.	Identifying-Decide			accuracy, and begin	scientific equipment
		with help how to group	Identifying- talk	Make decisions about	to understand the	with increasing
	Identifying- Sort	materials, living things	about criteria for	different enquiries	need for repeat	accuracy and
	objects, materials	and objects, noticing	grouping, sorting and	including recognising	readings.	precision. Take
	and living things	changes over time and	categorising,	when a fair test is		repeat readings when
	into groups with	begin to see patterns	beginning to see	necessary and begin	Identifying-use and	appropriate.
	help according to	and relationships.	patterns and	to identify variables.	develop keys and	
	the observational		relationships.		other information	Identifying- use and
	features.			Identifying-	records to identify,	develop keys and
				Identifying	classify and describe	other information
	Equipment- Make			similarities,	living things and	records to identify
	relevant	Equipment- Use simple	Equipment- Make	differences and	materials.	and explain patterns
	observations using	equipment such as hand	systematic and	changes when talking		seen in the natural
	simple equipment	lenses, egg/sand	careful observations	about the different	Equipment- Select,	environment.
	e.g. thermometers,	timers, digital	using simple	processes. Use and	with prompting,	
	rain gauges, wind	microscopes, and	equipment such as	begin to create	appropriate	Equipment- Select
	vanes.	quadrants to take	magnets, hand lenses,	simple keys.	equipment, for	and use a range of
		measurements.	torches, mirrors and		example, (but not	scientific equipment
			data loggers.	Equipment- Make	limited to) measuring	to take
				systematic and	beakers, tape	measurements,
				careful observations	measures, filtration	including those used

				using a range of equipment, including thermometers, data loggers and circuit equipment.	devices, Newton meters and stopwatches.	in previous learning e.g. torches, prisms, mirrors, stopwatches, circuit equipment.
Record	Gather and record data with support, which has been modelled	Gather and record data to help answer questions. Record and communicate their findings in a range of ways and begin to use simple scientific language.	Record findings using simple scientific language in note form, drawings, labelled diagrams, tables, pictograms and tally charts. With modelling and guidance, gather, record, classify and present data in a variety of ways to help to answer questions. With prompting, use various ways of recording, grouping and displaying evidence and suggest how findings may be tabulated.	Record findings using simple scientific language, drawings and labelled diagrams, keys, bar charts, and tables. Gather, record, classify and present data in a variety of ways to help to answer questions. Present information, findings and conclusions for a variety of different audiences. Displays, oral presentations or written explanations.	Take and process repeat readings with modelling. Record data using labelled diagrams, keys, tables and charts. With support, use line graphs to record data, scientific diagrams, labels, classification keys and models.	Record data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, line and bar graphs. Choose the most effective approach to record and report results- use mathematical knowledge too.

Review	Discuss findings.	Discuss findings. Use	With prompting,	Report on findings	Report and present	Report and present
	Use their	their observations and	suggest conclusions	from enquiries,	findings from	findings from
	observations and	ideas to suggest	from enquiries	including oral and	enquiries, including	enquiries, including
	ideas to suggest	answers to simple	Suggest how findings	written explanations,	conclusions and, with	conclusions and
	answers to simple	questions.	could be reported.	displays or	prompting, suggest	causal relationships
	questions.			presentation of	causal relationships.	in oral and written
		Explain what they think	Suggest possible	results and	·	forms, such as in
	Explain, with help,	they have found out	improvements or	conclusions.	With support,	displays and other
	what they think	using simple scientific	further questions to		present findings	presentations.
	they have found	language and how they	investigate.	Use straightforward	from enquiries orally	
	out.	found it out.		scientific evidence to	and, in writing,	With support,
			Draw a simple	answer questions or	suggest further	suggest further
			conclusion based on	to support their	comparative or fair	comparative or fair
			evidence from an	findings.	tests.	tests based on
			enquiry or			findings.
			observation with	Use results to draw	Use a simple mode of	
			help.	simple conclusions,	communication to	Identify validity of
				make predictions for	justify their	conclusion and
				new values, suggest	conclusions on a	required
				improvements and	hypothesis.	improvement to
				raise further		methodology and
				questions.	Begin to recognise	predictions for what
					how scientific ideas	would happen.
				Use recorded data to	change over time.	
				make predictions,		Discuss how
				pose new questions		scientific ideas
				and suggest		develop over time.
				improvements for		
				further enquires.		

